Graude-msk.ru

Ремонт бытовой техники
521 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как сделать регулятор мощности на симисторе своими руками: варианты схем

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Схема плавной регулировки пылесоса

Тиристоры часто используются в устройствах плавного регулирования мощности таких активных нагрузок, как нагревательные элементы (для управления температурой нагревателя); коллекторные двигатели (для изменения скорости вращения); лампы накаливания (для изменения яркости свечения и цветовой температуры, а также для плавного включения с целью увеличения срока службы). Несмотря на присущие тиристорным регуляторам недостатки (несинусоидальность выходного напряжения; высокий уровень помех), они имеют простое устройство и низкую стоимость. Лучшие показатели могут быть получены в устройствах регулировки с ШИМ с ключами на транзисторах. Но для работы с сопоставимыми по мощности нагрузками, потребуется несопоставимо более сложная схема, содержащая ключевой транзистор, цена которого на данный момент в несколько раз превышает цену тиристора, способного управлять аналогичной нагрузкой.

Принцип действия регулятора мощности

Структурная схема тиристорного регулятора мощности.

Рис. %img:i1

Основная идея тиристорного управления мощностью в цепи переменного тока состоит в том, что в каждом периоде питающего переменного тока, тиристор находится в открытом (проводящем) состоянии только часть времени. Ток через нагрузку течёт только при открытом тиристоре и, средняя за период мощность оказывается тем меньше, чем меньшую часть периода тиристор открыт. Открывается тиристор импульсом на управляющем электроде, который подаётся с задержкой относительно начала периода (за начало периода принимаем начало положительной полуволны питающего напряжения). Величина задержки как раз определяет, какую часть периода тиристор будет находиться в открытом состоянии, а значит и среднюю мощность нагрузки. Большинство используемых типов тиристоров являются незапираемыми, т.е. с помощью управляющего вывода их можно только открыть; в закрытое состояние они переходят при приложении обратного напряжения между анодом и катодом или уменьшении прямого тока ниже определённого уровня. Это может произойти, например, при переходе питающего напряжения через нулевое значение. То есть, в данном случае, закрывается тиристор сам, в конце полупериода. На протяжении тех полупериодов, когда тиристор смещён в обратном направлении, он всё время находится в закрытом состоянии (предполагается использование триодного тиристора, не проводящего в обратном направлении — это наиболее распространённый тип тиристоров).

Читайте так же:
Регулировка анкерной оси в часовом механизме настенных часов

Диаграммы работы тиристорного регулятора мощности.

Рис. %img:i2

На рис. %img:i2 изображены временные диаграммы, поясняющие процессы в тиристорном регуляторе мощности. Зелёным пунктиром показан график питающего напряжения; красной линией — график напряжения на нагрузке. Ниже (в другом масштабе напряжений) показана форма управляющего сигнала, в данном случае он имеет вид коротких прямоугольных импульсов. При коммутации тока с промышленной частотой, можно пренебречь инерционностью тиристора и считать, что включение происходит по нарастающему фронту управляющего сигнала; импульсы самого управляющего сигнала могут быть достаточно короткими, в качестве нижней границы их длительности можно принять время включения тиристора.

В структурной схеме на рис. %img:i1, тиристор образует управляемый однополупериодный выпрямитель. В результате, через нагрузку течёт выпрямленный (пульсирующий) ток, а максимальная мощность на нагрузке не может превышать половину от мощности при непосредственном включении нагрузки в сеть. Если это не то, что нам требуется, следует выбрать другую схему. Возможные варианты: дополнить схему мостовым выпрямителем, превращающим ключ с односторонней проводимостью в ключ с двусторонней проводимостью (рис. %img:i3); использовать два встречно включённых тиристора, каждый с собственной схемой управления (рис. %img:i4); использовать специально предназначенные для подобных случаев триаки (они же симисторы), рис %img:i5.

(Мост + тиристор) как ключ с двусторонней проводимостью.

Рис. %img:i3

Два встречно включенных тиристора как ключ с двусторонней проводимостью.

Рис. %img:i4

Структурная схема симисторного регулятора мощности.

Рис. %img:i5

Диаграммы работы симисторного регулятора мощности.

Рис. %img:i6

Вариант на рис. %img:i5 с симистором является оптимальным для большинства случаев. Ток через нагрузку получается несинусоидальным, но не содержит значительной постоянной составляющей; мощность может регулироваться от 0 до значения, практически равного мощности при непосредственном подключении нагрузки к сети; схема содержит минимум деталей. Зачастую в подобных схемах симистор используется совместно с маломощной симисторной оптопарой (рис. %img:i7), которая обеспечивает гальваническую развязку цепей управления от сети, попутно решает все вопросы с полярностью импульсов на управляющем выводе симистора и обеспечивает дополнительное усиление управляющего сигнала.

Управление симистором через оптосимистор.

Рис. %img:i7

Здесь резистор R1 ограничивает ток через управляющий вывод симистора TRIAC; R2 обеспечивает нулевое напряжение на управляющем выводе при закрытой оптопаре IC1.

Пример схемы 1 (регулятор мощности пылесоса LG)

В качестве примера реальной схемы (рис. %img:i8) приведём схему регулятора мощности в пылесосе LG TurboX 1600W; 400W Suction Power; V-C4566HTU. В целом, это достаточно хорошая схема, обеспечивает плавное регулирование мощности в достаточно широких пределах; максимально допустимая мощность нагрузки составляет около 1.5 кВт; схема проста и надёжна. В отличие от схемы, приведённой в следующем примере, может использоваться как образец для собственных разработок.

Схема регулятора мощности в пылесосе LG TurboX 1600W; 400W Suction Power; V-C4566HTU.

Рис. %img:i8

На выводы ACW печатной платы подаётся напряжение сети; к выводам MOTOR подключается коллекторный электродвигатель пылесоса. Роль основного силового элемента в схеме играет симистор TRIAC. Демпферная цепь R1, C1 ограничивает скорость нарастания и величину выбросов напряжения на симисторе и тем самым защищает его от ложных включений. Необходимость демпферной цепи обусловлена тем, что электродвигатель как нагрузка может иметь реактивную (индуктивную) составляющую, на которой происходят выбросы напряжения в моменты коммутации — и внешней, и внутренней, связанной с работой щёточно-коллекторного узла. Управляется симистор через оптосимистор IC1. Схема управления питается через понижающий трансформатор с выходным переменным напряжением 12 В. Таким образом, схема управления имеет гальваническую развязку от сети, что обеспечивает безопасность пользователя при регулировке мощности пылесоса с помощью переменного резистора, встроенного в рукоятку шланга.

Читайте так же:
Как регулировать частоту вращения кулера процессора

Схема управления работает следующим образом. На выходе мостового выпрямителя DB1, подключённого к вторичной обмотке трансформатора, формируется пульсирующее напряжение (сглаживающий фильтр отсутствует). Делитель R6, R7 и диод D5 обеспечивают смещение на базе транзистора Q2; эмиттер транзистора подключён к конденсатору C5, входящему в состав RC-цепи (R9, переменный резистор регулировки оборотов, C5). С помощью переменного резистора регулировки оборотов можно изменять постоянную времени данной RC-цепи: чем больше сопротивление переменного резистора, тем медленнее будет заряжаться конденсатор. В начале каждой полуволны питающего напряжения конденсатор C5 разряжен, транзисторы Q1, Q2 закрыты. Во время каждой полуволны напряжения происходит заряд конденсатора и в тот момент, когда напряжение на конденсаторе C5 превысит напряжение смещения на базе Q2, транзистор Q2 откроется, его коллекторный ток откроет транзистор Q1, который через оптопару включит симистор. При этом ток через светодиод оптопары IC1 вызовет падение напряжения на резисторе R8, в результате чего упадёт напряжение смещения на базе транзистора Q1, а его коллекторный ток ещё более увеличится, увеличивая и коллекторный ток транзистора Q1. То есть, Q1 и Q2 образуют схему с положительной обратной связью, которая после срабатывания, "защёлкивается": Q1 переходит в состояние насыщения, напряжение на базе Q2 становится практически равным 0. Конденсатор достаточно быстро разряжается через резистор малого сопротивления R10, после чего транзисторы Q2 и Q1 закрываются. Напряжение смещения на базе Q2 восстанавливается, конденсатор C5 снова начинает заряжаться. Таким образом, схема формирует импульс запуска симистора IC1 (который открывает симистор TRIAC), причём временем запаздывания момента формирования импульса относительно начала полупериода мы можем управлять (изменяя сопротивление переменного резистора).

Кстати, до конца полупериода схема успевает сформировать ещё несколько импульсов запуска, но они уже ни на что не влияют: открытые первым импульсом симисторы остаются открытыми до конца полупериода. В следующем полупериоде все процессы повторяются.

Для управления регулятором мощности используется переменный резистор, а точнее приведённая на рис. %img:i9 схема, построенная на основе сдвоенного переменного резистора.

Управление регулятором мощности.

Рис. %img:i9

Немного о резисторах R12, R12-1, назначение которых, с первого взгляда, может показаться неочевидным. Ведь судя по схеме, они не входят в состав какого-либо контура, следовательно, ток через них не течёт, а значит, их можно было бы исключить. Кроме того, они создают гальваническую связь между низковольтной частью схемы и сетью, которые так тщательно развязывались с помощью оптопары и трансформатора. На самом деле резисторы необходимы и служат именно для искусственного введения гальванической связи между электрически изолированными частями схемы. При работе пылесоса, связанной с формированием интенсивных потоков воздуха, содержащих множество пылевых частиц, может происходить накопление значительных зарядов статического электричества на отдельных узлах агрегата. В частности, это могло бы происходить на всей схеме управления в целом, особенно с учётом того, что провод от схемы управления до переменного резистора для регулировки оборотов проложен внутри всасывающего шланга пылесоса. По мере накопления заряда возможен пробой трансформатора или оптопары и выход схемы из строя. Резисторы R12, R12-1 препятствуют такому накоплению заряда, а ввиду их высокого сопротивления, возможный ток утечки из сети на землю оказывается достаточно малым, чтобы устройство осталось безопасным для пользователя.

Читайте так же:
Вентилятор канальный с регулировкой скорости 125

Пример схемы 2 (регулятор мощности дрели)

На следующем рисунке приведена схема регулятора оборотов дрели. Здесь уже используется тиристор, электродвигатель питается выпрямленным током. Схема предельно упрощена, отсутствует гальваническая развязка между сетью и элементами управления; сама схема формирования управляющих импульсов для тиристора построена полностью на пассивных элементах и довольно примитивна. В результате характеристики схемы оказываются весьма посредственными (регулировка не плавная, скорее грубая, скорость вращения нестабильна). Кроме того, дрель является достаточно мощным потребителем и использование однополупериодного выпрямителя, который имеет постоянную составляющую потребляемого от сети тока, нельзя признать удачным решением. Эту схему следует рассматривать не как образец для подражания, а как подтверждение того, что схема управления тиристором/симистором может быть крайне простой.

Схема електрическая принципиальная дрели ДРЭ-2 (производства завода Диффузион).

Рис. %img:i10

Регулятор для паяльника на микросхеме

Вариант непрост, но имеет свои плюсы. Плавное регулирование напряжения на нагрузке от 0 до 2 кВт и отсутствие помех. При эксплуатации на большой мощности обязательна установка радиатора на VS1.

Как собрать регулятор для паяльника не выдающий помех

Самодельный регулятор паяльника без помех

К561ЛА7 — К176ЛА7.
КД503А — КД514А, КД522А.
КТ361В — КТ326В, КТ361А.

Простая схема для 36 вольтового паяльника

Эта схема вполне рабочая с минимумом деталей.

Простая схема регулятора паяльника низковольтного переменного напряжения

Простая схема регулятора паяльника низковольтного переменного напряжения

Есть аналогичные схемы регулирования сетевого напряжения. Здесь только меньше предел регулировки.

Как подключить к болгарке регулятор

Для подключения самодельного регулятора мощности не требуется особых знаний, и любой домашний мастер справится с этой задачей. Устанавливается модуль в разрыв одного провода, через который идет питание на болгарку. То есть один провод остается целым, а в разрыв второго впаивается регулятор.

Таким же образом можно подключить и заводской регулятор мощности стоимостью около 150 руб., который часто приобретается мастерами в Китае.

Если места в болгарке очень мало, то регулятор можно разместить снаружи инструмента, как показано на следующем фото.

Плавный пуск

Также регулятор можно поместить в розетку и использовать ее, чтобы уменьшить обороты не только у болгарки, но и у других электроприборов (дрели, точила, фрезерного или токарного станка по дереву и т.д.). Делается это следующим образом.

  1. Приобретите в магазине электротоваров распределительную коробку (подойдет с размерами 65х65х50 мм).
    Распределительная коробка
  2. Также следует купить наружную розетку небольших размеров и сетевой кабель с электрической вилкой.
    Розетка с сетевым кабелем и вилкой
  3. В боковой стенке распределительной коробки просверлите отверстие для вставки в него регулятора переменного резистора.
  4. Плата заводского регулятора или самодельное устройство размещается внутри распределительной коробки. Все выступающие части в коробке, мешающие монтажу, можно срезать.
    Плата заводского регулятора
  5. Розетку следует закрепить на крышке распределительной коробки, предварительно протянув провода внутрь последней.
    Крепеж розетки
  6. На рисунке выше можно увидеть, что провода сетевого кабеля касаются радиатора, который при работе нагревается. Поэтому на него одета трубка из ПВХ. Но лучше, если просверлить для сетевого кабеля отверстие в другом месте, чтобы исключить контакт его с радиатором.

Подсоединяется регулятор так, как было описано выше – на разрыве одного из проводов питающего кабеля.

На следующих фото показано, как будет выглядеть готовая розетка, имеющая встроенный регулятор оборотов болгарки, которую можно использовать и для других электроприборов.

Читайте так же:
Прикроватный светильник с регулировкой яркости

Розетка со встроенным регулятором оборотов

Розетка с регулятором

Вместо распределительной коробки можно использовать любой пластиковый корпус подходящего размера. Также короб можно изготовить самостоятельно, склеив куски пластика клеевым пистолетом.

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).
Читайте так же:
Как регулировать звук на самсунге галакси

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Для чего вообще регулировать скорость вращения диска болгарки?

  1. При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска.
    Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска;
  2. Резка и раскрой камня и кафеля на высокой скорости может быть опасной.
    К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах;
  3. Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения.
    Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления;
  4. Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора.
    Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках болгарку с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально;
  5. Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
  6. При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя.
    Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.

Заключение

Собрать регулятор оборотов для недорогой болгарки по силам почти каждому владельцу. Для этого нужно несколько недорогих деталей, любая из которых, в крайнем случае, может быть куплена в интернет-магазине. Тиристор из статьи стоит 40 руб на Чип-и-Дип, а U2008B есть на Алиэкспресс за 140 руб. Остальные материалы также доступны, возможно уже есть под руками.

УШМ с регулятором оборотов намного функциональнее и безопаснее, изнашивается значительно меньше. А самодельный регулятор стоит гораздо дешевле, чем встроенная опция, даже в бытовой машинке.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector