Graude-msk.ru

Ремонт бытовой техники
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микроконтроллерный регулятор мощности на Atmega16

Микроконтроллерный регулятор мощности на Atmega16

На фото представлен действующий макет регулятора мощности, схема которого (с небольшими доработками) используется в реальной действующей установке. Цель публикации ознакомить коллег с практической реализацией принципов регулирования мощности в замкнутом контуре регулирования (т.е. регулирование с обратной связью по току, по напряжению, или скорости), с микроконтроллером Atmega16 в качестве регулятора. В нижней части фото расположен стандартный шунт 75ШСМ-10-0.5.

Микроконтроллер в данном случае представляет собой часть замкнутого контура регулирования. Его задача выдавать на регулируемый объект управляющее напряжение и контроль тока в нагрузке. На программное обеспечение возложена задача, передавать напряжение ЦАП, контролировать его при помощи АЦП, а также после несложной доработки программы — поддерживать величину выходного напряжения в заданных пределах.

Я постарался максимально упростить программу и сделать ее доступной для понимания даже начинающих радиолюбителей желающих познакомиться с AVR микроконтроллерами.

Содержание

Двигатель состоит из постоянного магнита-ротора, вращающегося в магнитном поле катушек статора, по которым проходит ток, коммутируемый ключами (вентилями), управляемыми микроконтроллером. Микроконтроллер переключает катушки таким образом, чтобы взаимодействие их поля с полем ротора создавало крутящий момент при любом его положении.

На входы преобразователя координат (ПК) поступают напряжения постоянного тока u q > , действие которого аналогично напряжению якоря двигателя постоянного тока, и u d > , аналогичное напряжению возбуждения двигателя постоянного тока (аналогия действует при рассмотрении схемы независимого возбуждения двигателя постоянного тока).

Как правило, в системах управления электропривода задаётся u d = 0 =0> [2] , при этом уравнения преобразования координат принимают вид [3] :

Как правило, электронная часть ВД коммутирует фазы статора синхронной машины так, чтобы вектор магнитного потока статора был ортогонален вектору магнитного потока ротора (т. н. векторное управление). При соблюдении ортогональности потоков статора и ротора обеспечивается поддержание максимального вращающего момента ВД в условиях изменения частоты вращения, что предотвращает выпадение ротора из синхронизма и обеспечивает работу синхронной машины с максимально возможным для неё КПД. Для определения текущего положения потока ротора вместо датчика положения ротора могут использоваться токовые датчики (косвенное измерение положения).

Читайте так же:
Как отрегулировать напор воды в частном доме

Электронная часть современного ВД содержит микроконтроллер и транзисторный мост, а для формирования фазных токов используется принцип широтно-импульсной модуляции (ШИМ). Микроконтроллер отслеживает соблюдение заданных законов управления, а также производит диагностику системы и её программную защиту от аварийных ситуаций.

Иногда датчик положения ротора отсутствует, а положение оценивается системой управления по измерениям токовых датчиков с помощью наблюдателей (т. н. «бездатчиковое» управление ВД). В таких случаях за счёт удаления дорогостоящего и зачастую громоздкого датчика положения уменьшается цена и массо-габаритные показатели электропривода с ВД, однако усложняется управление, снижается точность определения положения и скорости.

В приложениях средней и большой мощности в систему могут дополнительно включаться электрические фильтры для смягчения негативных эффектов ШИМ: перенапряжений на обмотках, подшипниковых токов и снижения КПД. Впрочем, это характерно для всех типов двигателей.

Симистор — мощный ключ для сети 220 В

Самый простой способ управления нагрузкой 220В — использовать реле. Оно позволяет с помощью постоянного напряжения управлять мощной нагрузкой. В этой статье не будет рассматривать этот метод, он достаточно простой. Достаточно подать напряжение на магнит реле и он замкнёт контакты. К сожалению, реле не позволяет управлять нагрузкой достаточно быстро. При большом количестве включенийвыключений оно быстро выходит из строя. Также, в момент переключения возникают большие импульсные помехи. Использовать реле лучше при частоте управления не больше одного раза в 2-3 секунды.

Как мы уже знаем по статье «Как управлять мотором постоянного тока» в цепях постоянного тока транзистор является электронным ключом, устройством, которое позволяет малым напряжением или током управлять более мощной нагрузкой.

Для переменного тока тоже существуют такие электронные ключи — Симисторы.

Симистор проводит ток в обоих направлениях, поэтому используется в сетях переменного тока. Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой.

Читайте так же:
Пневмокраскопульт устройство и регулировка

Для удержания симистора в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Он остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети переменного тока). Эта точка на синусоиде называется переходом через ноль.

Симистором можно управлять напрямую от микроконтроллера, но для этого нужен довольно большой ток — 10-20 мА. Существуют также логические симисторы. У них ток управления составляет около 5 мА. В схемах лучше использовать обычные симисторы, они более защищены от самопроизвольного открытия. Что это такое и как можно управлять обычными симисторами? Читаем дальше.

Для начала посмотрим насколько мощной нагрузкой может управлять типичный симистор. Возьмём для примера симистор BT139-800. В datasheet обычно приводят графики выделяемой мощности на симисторе при управлении нагрузкой. Вот пример такого графика.


Зная выделяемую мощность, используем параметры рассеивания тепла корпусом, чтобы получить температуру нагрева симистора и оценить его работоспособность.

Из всех этих параметров следует, что без радиатора данный симистор может рассеять около 2Вт тепла. При управлении полными полупериодами нужно брать график тока для a=180 градусам. График в этой области практически линейный, поэтому можно сказать, что средний ток будет около 2А.

То есть без радиатора этот симистор сможет управлять нагрузкой в 2А * 220В = 440 Вт. В остальных случаях нужен будет радиатор.

Теперь разберёмся как микроконтроллер может управлять мощным симистором?

Схема устройства

Регулятор скорости вращения двигателя постоянного тока на Attiny13

Для большей наглядности всю схему можно поделить на несколько частей:

Читайте так же:
Настольная лампа ссср с регулировкой яркости

Блок питания

блок питания

Это типовой источник питания на стабилизаторе напряжения LM7805, который обеспечивает стабильное напряжение на уровне 5 В для питания микроконтроллера ATtiny13 и индикаторных светодиодов.

Индикаторные светодиоды

Индикаторные светодиоды

Для индикации значения рабочего цикла ШИМ используются 3 светодиода:

  • LED1 — текущее значение
  • LED2 — максимум
  • LED3 — минимум

Светодиоды LED2 и LED3 через токоограничивающие резисторы подключены непосредственно к выводам ATtiny13. Светодиод LED1, который указывает на текущее значение рабочего цикла ШИМ, управляется посредством транзистора T1 (BC337).

Поворотный энкодер

 Поворотный энкодер

Для правильной работы энкодера добавлены несколько компонентов. Резисторы R6 и R5 — это подтягивающие резисторы, которые «подтягивают» контакты A и B к шине питания. Контакт C напрямую подключен к GND. Конденсаторы C4 и C3 предназначены для фильтрации шума.

Драйвер на полевом транзисторе

Драйвер на полевом транзисторе

Для управления двигателем использован N-канальный MOSFET IRF540N, который может обеспечить ток до 33A. Диод D2 предназначен для защиты транзистора от ЭДС самоиндукции, возникающей при выключении двигателя. Конденсатор C1 необходим для фильтрации помех, создаваемых двигателем. Если вы не установите этот конденсатор, то на энкодере могут возникнуть помехи и он не будет работать должным образом.

Убедитесь, что вы установили IRF540N на радиатор, потому что при высоких токах он становится очень горячим!

Стаблизатор МК на 3,3 вольта, поэтому в зависимости от выходного транзистора можно использовать источник питания от 3.7 до 25 вольт. Частота коммутации составляет 32 кГц, а длительность импульса разделена на 256 шагов, в том числе полное включение и отключение.

Драйвер для MOSFET транзистора является — обычный 2N3904. Сам силовой транзистор может быть любой подходящий N-канальный MOSFET, не обязательно как по схеме 80NF55L.

ШИМ РЕГУЛЯТОР НА МИКРОКОНТРОЛЛЕРЕ

ШИМ РЕГУЛЯТОР НА МИКРОКОНТРОЛЛЕРЕ

Мощность дорожек на плате рассчитывается исходя из токов около 5 ампер, если более высокие токи, то нужно усиливать их припайкой толстого провода. Скачать файлы для контроллера

Читайте так же:
Как отрегулировать громкость микрофона на смартфоне

Измерение напряжения

0-5 Вольт

Простой пример, как измерить напряжение на аналоговом пине и перевести его в Вольты. Плата питается от 5V.

Таким образом переменная voltage получает значение в Вольтах, от 0 до 5. Чуть позже мы поговорим о более точных измерениях при помощи некоторых хаков. Почему мы делим на 1024, а не на 1023 , ведь максимальное значение измерения с АЦП составляет 1023? Ответ можно найти в даташите: АЦП при преобразовании отнимает один бит, т.е. 5.0 Вольт он в принципе может измерить только как 4.995, что и получится по формуле выше: 1023 * 5 / 1024 == 4.995.. . Таким образом делить нужно на 1024, если кто-то у вас спросит почему – отправьте его читать даташит.

Сильно больше 5 Вольт

Для измерения постоянного напряжения больше 5 Вольт нужно использовать делитель напряжения на резисторах (Википедия). Схема подключения, при которой плата питается от 12V в пин Vin и может измерять напряжение источника (например, аккумулятора): Код для перевода значения с analogRead в вольты с учётом делителя напряжения:

Как выбрать/рассчитать делитель напряжения?

  • Согласно даташиту на ATmega, сумма R1 + R2 не рекомендуется больше 10 кОм для достижения наибольшей точности измерения. В то же время через делитель на 10 кОм будет течь ощутимый ток, что критично для автономных устройств (читай ниже). Если девайс работает от сети или от аккумулятора, но МК не используется в режиме сна – ставим делитель 10 кОм и не задумываемся. Также рекомендуется поставить конденсатор между GND и аналоговым пином для уменьшения помех.
  • Если девайс работает от аккумулятора и микроконтроллер “спит”: пусть аккумулятор 12V, тогда через 10 кОм делитель пойдёт ток 1.2 мА, согласно закону Ома. Сам микроконтроллер в режиме сна потребляет

1 мкА, что в тысячу раз меньше! На самом деле можно взять делитель с гораздо бОльшим суммарным сопротивлением (но не больше 20 МОм, внутреннего сопротивления самого АЦП), но обязательно поставить конденсатор на

3.13 . Я хочу измерять литиевый аккумулятор с максимальным напряжением 12.8 Вольт. 12.8 / 3.13

Сильно меньше 5 Вольт

Для более точных измерений маленького напряжения можно подключить пин AREF к источнику низкого опорного напряжения (об этом было выше), чтобы “сузить” диапазон работы АЦП. Источник может быть как внешний, так и внутренний, например изменив опорное на внутреннее 1.1V ( analogReference(INTERNAL) ) можно измерять напряжение от 0 до 1.1 Вольта с точностью 1.1/1024

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector